Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Model identification and selection for single-index varying-coefficient models
Ist Teil von
Annals of the Institute of Statistical Mathematics, 2021-06, Vol.73 (3), p.457-480
Ort / Verlag
Tokyo: Springer Japan
Erscheinungsjahr
2021
Quelle
Free E-Journal (出版社公開部分のみ)
Beschreibungen/Notizen
Single-index varying-coefficient models include many types of popular semiparametric models, i.e., single-index models, partially linear models, varying coefficient models, and so on. In this paper, a two-stage efficient variable selection procedure is proposed to select important nonparametric and parametric components and obtain estimators simultaneously. We also find that the proposed procedure can separate predictors into varying-coefficient and constant-coefficient predictors automatically. Theoretically, it has the selection and estimation consistency properties. Simulation studies and a real data application are conducted to evaluate and illustrate the proposed methods.