Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 25 von 48796

Details

Autor(en) / Beteiligte
Titel
Interfacial Chemical Bond‐Modulated Z‐Scheme Charge Transfer for Efficient Photoelectrochemical Water Splitting
Ist Teil von
  • Advanced energy materials, 2021-02, Vol.11 (8), p.n/a
Ort / Verlag
Weinheim: Wiley Subscription Services, Inc
Erscheinungsjahr
2021
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • The Z‐scheme heterojunction has great potential in photoelectrochemical (PEC) water splitting due to its unique charge‐carrier migration pathway, superior carrier separation efficiency, and high redox capacity, but how to regulate the Z‐scheme charge transfer at the nanometric interface of heterostructures still remains a big challenge. Herein, InOCd bond is rationally introduced at the interface between ZnIn2S4 nanosheets and CdS nanoparticles through a facile cation exchange reaction, which successfully converts the previously reported type II band structure to a direct Z‐scheme heterojunction (ZnIn2S4/CdS) as confirmed by various characterizations. Density functional theory calculation reveals that the InOCd interfacial chemical bond significantly uplifts the Fermi level of ZnIn2S4 and CdS, inverts the interfacial band bending direction, thus resulting in the formation of Z‐scheme heterojunction. Moreover, an amorphous ZnO overlayer is deposited to eliminate the surface defects and accelerate the surface reaction kinetics. Benefiting from the superior charge separation efficiency and high redox ability originating from the Z‐scheme structure, the optimum ZnIn2S4/CdS/ZnO photoanode exhibits a dramatically enhanced PEC performance with low onset potential (−0.03 V vs reversible hydrogen electrode, VRHE) and large photocurrent of 3.48 mA cm−2 at 1.23 VRHE, which is about 21.75 times that of pristine ZnIn2S4. A direct Z‐scheme ZnIn2S4/CdS heterojunction is successfully designed and fabricated by deliberately introducing InOCd interfacial chemical bond for photoelectrochemical (PEC) water splitting. In addition, a ZnO overlayer is deposited on the composite to eliminate surface defects and accelerate the oxygen evolution reaction kinetics. As a result, the composite photoanode exhibits highly efficient PEC activity in terms of photocurrent and onset potential.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX