Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 15 von 99
International journal of advanced manufacturing technology, 2019-07, Vol.103 (1-4), p.1155-1174
2019
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Research on modal analysis method of CNC machine tool based on operational impact excitation
Ist Teil von
  • International journal of advanced manufacturing technology, 2019-07, Vol.103 (1-4), p.1155-1174
Ort / Verlag
London: Springer London
Erscheinungsjahr
2019
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • With the rapid development of modern industry and industrial upgrading, machine tool performances such as high machining speed, high machining accuracy, and high reliability have gradually become the development trend of high-end CNC machine tools. The vibration characteristics of the machine structure become an important factor affecting the machining quality and processing efficiency of the machine tool. Since the movable parts of the CNC machine tool will impact the machine structure itself during the acceleration and deceleration process, by identifying the structural vibration response signal, the modal parameters of the machine tool in the running state can be obtained, called active excitation mode analysis. However, this method still has certain defects in theory and experiment. For example, the excitation principle is not theoretically explained, and the excitation energy and the frequency band of the method are limited. To solve these problems, this paper conducts more comprehensive research on the modal analysis method of CNC machine tools based on operational impact excitation. The main research contents are as follows: considering the rigid body motion of the table and the elastic collision of the screw nut pair, the impact excitation is modeled and analyzed. We have introduced a response-based modal identification algorithm. The influence factors of impact excitation energy and frequency band were studied from both theoretical and experimental aspects. Design three excitation sequences for workbench excitation and spindle excitation, respectively, analyze the vibration response and modal identification of the machine tool structure under different excitation sequences. It is verified that the method does not depend on the specific excitation sequence, as long as it satisfies the random characteristics. Aiming at the problem of insufficient excitation energy of the machine tool structure for single-component impact excitation, a multi-component joint impact excitation method based on the principle of multi-point excitation technology is proposed. The design experiment is carried out to verify the impact excitation method, which shows that the joint excitation has better excitation effect than single-axis excitation.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX