Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Materials‐Related Strategies for Highly Efficient Triboelectric Energy Generators
Ist Teil von
Advanced energy materials, 2021-02, Vol.11 (7), p.n/a
Ort / Verlag
Weinheim: Wiley Subscription Services, Inc
Erscheinungsjahr
2021
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
Since 2012, triboelectric energy harvesting technologies have received a substantial amount of attention as they constitute one of the most efficient ways of transforming vibrational and frictional energy into electrical energy, regardless of location and environmental conditions. One of the most significant advantages of this technology is in the suitability of a very wide range of materials that can be readily incorporated into devices. In order to achieve efficient energy harvesting performance, advances in materials science and nanotechnology have been applied to develop high‐performance triboelectric energy harvesters, which have witnessed a tremendous growth in popularity. However, even though a large number of materials, including polymers, metals, inorganic and composite materials, have been separately studied for triboelectric energy harvesting applications, the key features of these different classes of materials have never been presented together or summarized, to provide valuable insight for future materials development in this field. Here, a comprehensive review of the up‐to‐date materials‐driven progress of triboelectric energy harvesting devices is provided, with emphasis on the study of materials‐related operating mechanisms and emergent materials design strategies for highly efficient triboelectric devices. The discussion includes several issues and challenges that need to be addressed for further improvement of triboelectric devices.
A comprehensive review of the materials‐driven progress of triboelectric energy harvesting devices is presented, with emphasis on the study of materials‐related operating mechanisms and emergent materials design strategies for highly efficient triboelectric generators for mechanical energy harvesting applications.