Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
A He I upper atmosphere around the warm Neptune GJ 3470 b
Ist Teil von
Astronomy and astrophysics (Berlin), 2020-06, Vol.638, p.A61
Ort / Verlag
Heidelberg: EDP Sciences
Erscheinungsjahr
2020
Quelle
EZB-FREE-00999 freely available EZB journals
Beschreibungen/Notizen
High resolution transit spectroscopy has proven to be a reliable technique for the characterization of the chemical composition of exoplanet atmospheres. Taking advantage of the broad spectral coverage of the CARMENES spectrograph, we initiated a survey aimed at characterizing a broad range of planetary systems. Here, we report our observations of three transits of GJ 3470 b with CARMENES in search of He (2
3
S) absorption. On one of the nights, the He
I
region was heavily contaminated by OH
−
telluric emission and, thus, it was not useful for our purposes. The remaining two nights had a very different signal-to-noise ratio (S/N) due to weather. They both indicate the presence of He (2
3
S) absorption in the transmission spectrum of GJ 3470 b, although a statistically valid detection can only be claimed for the night with higher S/N. For that night, we retrieved a 1.5 ± 0.3% absorption depth, translating into a
R
p
(
λ
)∕
R
p
= 1.15 ± 0.14 at this wavelength. Spectro-photometric light curves for this same night also indicate the presence of extra absorption during the planetary transit with a consistent absorption depth. The He (2
3
S) absorption is modeled in detail using a radiative transfer code, and the results of our modeling efforts are compared to the observations. We find that the mass-loss rate,
Ṁ
, is confined to a range of 3 × 10
10
g s
−1
for
T
= 6000 K to 10 × 10
10
g s
−1
for
T
= 9000 K. We discuss the physical mechanisms and implications of the He
I
detection in GJ 3470 b and put it in context as compared to similar detections and non-detections in other Neptune-size planets. We also present improved stellar and planetary parameter determinations based on our visible and near-infrared observations.