Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Blockchain-Based Energy Trading and Load Balancing Using Contract Theory and Reputation in a Smart Community
Ist Teil von
IEEE access, 2020, Vol.8, p.222168-222186
Ort / Verlag
Piscataway: IEEE
Erscheinungsjahr
2020
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
The rapid deployment of Electric Vehicles (EVs) and the integration of renewable energy sources have ameliorated the existing power systems and contributed to the development of greener smart communities. However, load balancing problems, security threats, privacy leakage issues, etc., remain unresolved. Many blockchain-based approaches have been used in literature to solve the aforementioned challenges. However, they are not sufficient to obtain satisfactory results because of the inefficient energy management methods and time-intensiveness of the primitive cryptographic executions on the network devices. In this paper, an efficient and secure blockchain-based Energy Trading (ET) model is proposed. It leverages the contract theory, incentive mechanism, and a reputation system for information asymmetry scenario. In order to motivate the ET entities to trade energy locally and EVs to participate in smart energy management, the proposed incentive provisioning mechanism plays a vital role. Besides, a reputation system improves the reliability and efficiency of the system and discourages the blockchain nodes from acting maliciously. A novel consensus algorithm, i.e., Proof of Work based on Reputation (PoWR), is proposed to reduce transaction confirmation latency and block creation time. Moreover, a shortest route algorithm, i.e., the Dijkstra algorithm, is implemented in order to reduce the traveling distance and energy consumption of the EVs during ET. The performance of the proposed model is evaluated using peak to average ratio, social welfare, utility of local aggregator, etc., as performance metrics. Moreover, privacy and security analyses of the system are also presented.