Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Decay rates for semilinear wave equations with vanishing damping and Neumann boundary conditions
Ist Teil von
Mathematical methods in the applied sciences, 2021-01, Vol.44 (1), p.303-314
Ort / Verlag
Freiburg: Wiley Subscription Services, Inc
Erscheinungsjahr
2021
Quelle
Wiley Online Library - AutoHoldings Journals
Beschreibungen/Notizen
The paper is concerned with the semilinear wave equations with time‐dependent damping γ(t)=α/(1+t) (α>0), under the effect of nonlinear source f behaving like a polynomial, and subject to Neumann boundary conditions. Constructing appropriate auxiliary functions, we obtain an explicit uniform decay rate estimate for the solutions of the equation in terms of the exponent of f, when α is large enough. On the other hand, via a new hyperbolic version of Dirichlet quotients, we show that the upper estimate is optimal in some case, which implies the existence of slow solutions.