Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 3 von 3326

Details

Autor(en) / Beteiligte
Titel
Identifying Fake Accounts on Social Networks Based on Graph Analysis and Classification Algorithms
Ist Teil von
  • Security and communication networks, 2018-01, Vol.2018 (2018), p.1-8
Ort / Verlag
Cairo, Egypt: Hindawi Publishing Corporation
Erscheinungsjahr
2018
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Social networks have become popular due to the ability to connect people around the world and share videos, photos, and communications. One of the security challenges in these networks, which have become a major concern for users, is creating fake accounts. In this paper, a new model which is based on similarity between the users’ friends’ networks was proposed in order to discover fake accounts in social networks. Similarity measures such as common friends, cosine, Jaccard, L1-measure, and weight similarity were calculated from the adjacency matrix of the corresponding graph of the social network. To evaluate the proposed model, all steps were implemented on the Twitter dataset. It was found that the Medium Gaussian SVM algorithm predicts fake accounts with high area under the curve=1 and low false positive rate=0.02.
Sprache
Englisch
Identifikatoren
ISSN: 1939-0114
eISSN: 1939-0122
DOI: 10.1155/2018/5923156
Titel-ID: cdi_proquest_journals_2455784308

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX