Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 11 von 1311
IEEE access, 2019, Vol.7, p.93275-93285
2019
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Impact of ECG Dataset Diversity on Generalization of CNN Model for Detecting QRS Complex
Ist Teil von
  • IEEE access, 2019, Vol.7, p.93275-93285
Ort / Verlag
Piscataway: IEEE
Erscheinungsjahr
2019
Quelle
Free E-Journal (出版社公開部分のみ)
Beschreibungen/Notizen
  • Detection of QRS complexes in electrocardiogram (ECG) signal is crucial for automated cardiac diagnosis. Automated QRS detection has been a research topic for over three decades and several of the traditional QRS detection methods show acceptable detection accuracy, however, the applicability of these methods beyond their study-specific databases was not explored. The non-stationary nature of ECG and signal variance of intra and inter-patient recordings impose significant challenges on single QRS detectors to achieve reasonable performance. In real life, a promising QRS detector may be expected to achieve acceptable accuracy over diverse ECG recordings and, thus, investigation of the model's generalization capability is crucial. This paper investigates the generalization capability of convolutional neural network (CNN) based-models from intra (subject wise leave-one-out and five-fold cross validation) and inter-database (training with single and multiple databases) points-of-view over three publicly available ECG databases, namely MIT-BIH Arrhythmia, INCART, and QT. Leave-one-out test accuracy reports 99.22%, 97.13%, and 96.25% for these databases accordingly and inter-database tests report more than 90% accuracy with the single exception of INCART. The performance variation reveals the fact that a CNN model's generalization capability does not increase simply by adding more training samples, rather the inclusion of samples from a diverse range of subjects is necessary for reasonable QRS detection accuracy.
Sprache
Englisch
Identifikatoren
ISSN: 2169-3536
eISSN: 2169-3536
DOI: 10.1109/ACCESS.2019.2927726
Titel-ID: cdi_proquest_journals_2455637086

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX