Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
ADRC Dynamic Stabilization of an Unstable Heat Equation
Ist Teil von
IEEE transactions on automatic control, 2020-10, Vol.65 (10), p.4424-4429
Ort / Verlag
New York: IEEE
Erscheinungsjahr
2020
Quelle
IEEE/IET Electronic Library (IEL)
Beschreibungen/Notizen
In this article, we consider the exponential compensation of an unstable heat equation through a dynamic boundary active disturbance rejection control (ADRC) compensator, which is described by a first-order system of two ordinary differential equations. The one internal point temperature of the heat equation is measured and fluxed into the compensator while the output of the compensator is forced into the boundary of heat equation. The resulting closed-loop system has been shown to be well-posed by the semigroup approach. The eigenvalues of the closed-loop system are tested to be located at the open left-half plane by the Nyquist criterion for distributed parameter systems. Then the Riesz basis method is adopted to show that the closed-loop system is exponentially stable. Numerical simulations are presented to show the effectiveness of the ADRC compensator to stabilize the unstable heat equation with one unstable pole.