Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
•Coupled problem of a hydraulic fracture (HF) with proppant transport is solved.•Enhanced pseudo-3D model is used for rapid HF modeling.•Saffman-Taylor instability is predicted for proppant schedule with pulses.•Fracture growth is noticeably influenced by the flow instabilities.•Proppant schedule with pulses can lead to longer fractures.
This paper presents the coupled model of a hydraulic fracturing and proppant transport. The former is described in terms of enhanced pseudo-3D model that considers height growth across two symmetric stress barriers, while the latter is given by two-dimensional transport model, stemming from the solution of an elliptical equation for fluid pressure and advection equation for the proppant transport. These two sub-modules are solved numerically using implicit time integration in the hydraulic part and explicit time stepping in the transport part. In addition, interpolation is used to couple the two models with different grids. Results of several numerical simulations are presented for different configurations to demonstrate the interplay between these two modules. In particular, the developed coupled scheme allows us to study phenomena associated with complex fluid flow within the fracture, such as for the case of Saffman-Taylor instability.