Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
ROCKET: exceptionally fast and accurate time series classification using random convolutional kernels
Ist Teil von
Data mining and knowledge discovery, 2020-09, Vol.34 (5), p.1454-1495
Ort / Verlag
New York: Springer US
Erscheinungsjahr
2020
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
Most methods for time series classification that attain state-of-the-art accuracy have high computational complexity, requiring significant training time even for smaller datasets, and are intractable for larger datasets. Additionally, many existing methods focus on a single type of feature such as shape or frequency. Building on the recent success of convolutional neural networks for time series classification, we show that simple linear classifiers using random convolutional kernels achieve state-of-the-art accuracy with a fraction of the computational expense of existing methods. Using this method, it is possible to train and test a classifier on all 85 ‘bake off’ datasets in the UCR archive in
<
2
h
, and it is possible to train a classifier on a large dataset of more than one million time series in approximately 1 h.