Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 13 von 34849

Details

Autor(en) / Beteiligte
Titel
Canopy structure explains the relationship between photosynthesis and sun-induced chlorophyll fluorescence in crops
Ist Teil von
  • Remote sensing of environment, 2020-05, Vol.241, p.111733, Article 111733
Ort / Verlag
New York: Elsevier Inc
Erscheinungsjahr
2020
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Remote sensing of far-red sun-induced chlorophyll fluorescence (SIF) has emerged as an important tool for studying gross primary productivity (GPP) at the global scale. However, the relationship between SIF and GPP at the canopy scale lacks a clear mechanistic explanation. This is largely due to the poorly characterized role of the relative contributions from canopy structure and leaf physiology to the variability of the top-of-canopy, observed SIF signal. In particular, the effect of the canopy structure beyond light absorption is that only a fraction (fesc) of the SIF emitted from all leaves in the canopy can escape from the canopy due to the strong scattering of near-infrared radiation. We combined rice, wheat and corn canopy-level in-situ datasets to study how the physiological and structural components of SIF individually relate to measures of photosynthesis. At seasonal time scales, we found a considerably strong positive correlation (R2 = 0.4–0.6) of fesc to the seasonal dynamics of the photosynthetic light use efficiency (LUEP), while the estimated physiological SIF yield was almost entirely uncorrelated to LUEP both at seasonal and diurnal time scales, with the partial exception of wheat. Consistent with these findings, the canopy structure and radiation component of SIF, defined as the product of APAR and fesc, explained the relationship of observed SIF to GPP and even outperformed GPP estimation based on observed SIF at two of the three sites investigated. These results held for both half-hourly and daily mean values. In contrast, the total emitted SIF, obtained by normalizing observed SIF for fesc, improved only the relationship to APAR but considerably decreased the correlation to GPP for all three crops. Our findings demonstrate the dominant role of canopy structure in the SIF-GPP relationship and establish a strong, mechanistic link between the near-infrared reflectance of vegetation (NIRV) and the relevant canopy structure information contained in the SIF signal. These insights are expected to be useful in improving remote sensing based GPP estimates. •A mechanistic decomposition of canopy SIF for three in situ crop datasets.•The canopy structure and radiation factor outperforms SIF for GPP estimation.•Canopy escape fraction of SIF correlates with photosynthetic light use efficiency.•Correcting SIF for canopy scattering improves the correlation to APAR but not GPP.•Estimates of physiological SIF yield show no clear seasonal patterns.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX