Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 15 von 17

Details

Autor(en) / Beteiligte
Titel
Investigation on 1-heptanol as an oxygenated additive with diesel fuel for compression-ignition engine applications: An approach in terms of energy, exergy, exergoeconomic, enviroeconomic, and sustainability analyses
Ist Teil von
  • Fuel (Guildford), 2020-09, Vol.275, p.117973, Article 117973
Ort / Verlag
Kidlington: Elsevier Ltd
Erscheinungsjahr
2020
Link zum Volltext
Quelle
Elsevier ScienceDirect Journals Complete
Beschreibungen/Notizen
  • [Display omitted] •Exergoeconomic and exergoenvironmental analyses were applied on a DI diesel engine.•Performance results are similar for both heptanol blends and conventional diesel fuel.•CO2 emissions were decreased as the amount of heptanol increased in fuel blends.•The sustainability index ranges from 1.17 to 1.6 under the conditions studied. Studies on alternative and environmentally friendly fuels for compression-ignition engines continue intensively. In this work, energy, exergy, exergoeconomic, enviroeconomic, and sustainability analyses have been conducted by evaluating performance and emission values obtained by operating with different ratios of 1-heptanol/diesel blends (Hp0, Hp5, Hp10, and Hp20) as novel fuels under a constant speed (1500 rpm) with different engine loads (25%, 50%, 75%, and full load) in a single-cylinder, four-stroke, water-cooled, direct-injection, compression-ignition engine. In the test engine, energy and exergy efficiencies and losses, energetic and exergetic powers, irreversibility, and destruction of the exergy for the aforementioned fuel blends have been calculated and compared with pure diesel fuel. In the tests, the highest fuel consumption was determined as 0.221 kg/kWh in HP20 fuel at 100% load because 1-heptanol has lower calorific value than that of neat diesel fuel. The energy efficiency values in different loads of diesel engine for all fuel blends (Hp0-Hp20) have been calculated to be as between 14.46% and 40.72% along with the corresponding exergy efficiency values have been found to be as between 13.43% and 37.79%. By performing emission measurements, the highest CO2 emission cost has been calculated as 66.94 USD/year at a 100% load in Hp10 fuel according to the enviroeconomic analysis. In this present research, by implementing the exergoeconomic analysis, the highest engine output power cost at a load of 25% has been noted to be at 1.6 USD/MJ for Hp20 blend. Sustainability analysis has been determined according to the SI index, and the highest index was calculated to be 1.6 at a 100% load for Hp0 fuel.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX