Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 21 von 26734

Details

Autor(en) / Beteiligte
Titel
Hydrothermal gasification of soybean straw and flax straw for hydrogen-rich syngas production: Experimental and thermodynamic modeling
Ist Teil von
  • Energy conversion and management, 2020-03, Vol.208, p.112545, Article 112545
Ort / Verlag
Oxford: Elsevier Ltd
Erscheinungsjahr
2020
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • [Display omitted] •Soybean straw and flax straw were gasified under hydrothermal conditions.•Optimal temperature (500 °C), biomass-to-water ratio (1:10), biomass particle size (0.13 mm) and residence time (45 min).•Higher H2 yield from soybean straw (6.62 mmol/g) than flax straw (3.82 mmol/g).•KOH catalyst enhanced H2 and total gas yields from soybean straw and flax straw.•Experimental results show a slight deviation from thermodynamic yields. Biofuels produced from lignocellulosic feedstocks are gaining popularity because of the elevating energy demand, increasing greenhouse gas emissions, escalating fuel prices and dwindling fossil fuel resources. Therefore, it has become important to seek alternative energy resources from renewable waste biomass. In this study, agricultural crop residues such as soybean straw and flax straw were gasified in subcritical water (300 °C) and supercritical water (400 and 500 °C) for H2 production. To maximize the non-catalytic process, the impacts of temperature (300–500 °C), biomass-to-water ratio, BTW (1:5 and 1:10), biomass particle size (0.13 mm and 0.8 mm) and residence time (30–60 min) on H2 production were studied at a pressure range of 22–25 MPa. Maximum H2 yield and total gas yields of 6.62 mmol/g and 14.91 mmol/g, respectively were obtained from soybean straw at the highest temperature (500 °C), lower feed concentration (1:10 BTW), smaller particle size biomass (0.13 mm) and longer residence time (45 min). To evaluate the drift in the experimental H2 yield from the theoretical values, thermodynamic modeling using Gibbs free minimization method was performed. The experimental results showed slight deviations from the thermodynamic models due to the temperature gradient and absence of agitation in the tubular batch reactor. However, the KOH catalyst was found to elevate the H2, CO2 and CH4 yields for soybean straw and flax straw. The findings suggest that supercritical water gasification could be an efficient green technology for H2 production from waste biomass.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX