Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
•A new hybrid composite structure containing CNTRC and matrix cracked FRC layers is presented to model damaged blades.•A meshless based computational framework is proposed for nonlinear vibration behaviors of the hybrid composite blade.•The matrix cracks are revealed to have larger effect on the higher order frequency than the first order frequency.•The nonlinear vibration of cracked blade with a larger pretwisted angle is less sensitive to the deflection.
A modeling of the large amplitude free vibration of pretwisted hybrid composite blades is studied by considering the laminated structure which is composed of carbon nanotube reinforced composite (CNTRC) layers and matrix cracked fiber reinforced composite (FRC) layers. Two assumptions are made to facilitate this vibration study of hybrid nanocomposite: (1) CNTs are distributed across the layer thickness uniformly or functionally graded, and (2) the parallel slit matrix cracks disperse in the matrix homogeneously. Based on the theory of differential geometry, a novel shell model for pretwisted hybrid nanocomposites blade is developed. The von Kármán strains are adopted to capture the geometrically nonlinear behaviors of blades. The established governing equations are solved accurately and efficiently via the IMLS-Ritz method. The proposed numerical model is verified by making comparison studies and then the influence of crack density, pretwisted angle, CNT distribution and volume fraction, aspect ratio, width-to-thickness ratio, and ply-angle on the large amplitude vibration characteristics of matrix cracked pretwisted hybrid composite blade are scrutinized systematically. The present study serves as a useful benchmark to researchers who intend do further research in this topic.