Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 18 von 146

Details

Autor(en) / Beteiligte
Titel
Cellulose Nanofibrils Enhanced, Strong, Stretchable, Freezing‐Tolerant Ionic Conductive Organohydrogel for Multi‐Functional Sensors
Ist Teil von
  • Advanced functional materials, 2020-08, Vol.30 (35), p.n/a
Ort / Verlag
Hoboken: Wiley Subscription Services, Inc
Erscheinungsjahr
2020
Link zum Volltext
Quelle
Wiley Online Library
Beschreibungen/Notizen
  • To date, ionic conducting hydrogel attracts tremendous attention as an alternative to the conventional rigid metallic conductors in fabricating flexible devices, owing to their intrinsic characteristics. However, simultaneous realization of high stiffness, toughness, ionic conductivity, and freezing tolerance through a simple approach is still a challenge. Here, a novel highly stretchable (up to 660%), strong (up to 2.1 MPa), tough (5.25 MJ m−3), and transparent (up to 90%) ionic conductive (3.2 S m−1) organohydrogel is facilely fabricated, through sol–gel transition of polyvinyl alcohol and cellulose nanofibrils (CNFs) in dimethyl sulfoxide‐water solvent system. The ionic conductive organohydrogel presents superior freezing tolerance, remaining flexible and conductive (1.1 S m−1) even at −70 °C, as compared to the other reported anti‐freezing ionic conductive (organo)hydrogel. Notably, this material design demonstrates synergistic effect of CNFs in boosting both mechanical properties and ionic conductivity, tackling a long‐standing dilemma among strength, toughness, and ionic conductivity for the ionic conducting hydrogel. In addition, the organohydrogel displays high sensitivity toward both tensile and compressive deformation and based on which multi‐functional sensors are assembled to detect human body movement with high sensitivity, stability, and durability. This novel organohydrogel is envisioned to function as a versatile platform for multi‐functional sensors in the future. A polyvinyl alcohol/cellulose nanofibril organohydrogel with simultaneously improved strength, toughness, and ionic conductivity is rationally designed. The organohydrogel shows outstanding freezing tolerance while maintains high ionic conductivity (1.1 S m−1) at −70 °C due to the presence of high dielectric dimethyl sulfoxide‐water binary solvent. The organohydrogel demonstrates great promise in serving as multi‐functional sensors under extreme conditions.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX