Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
DHGAN: Generative adversarial network with dark channel prior for single‐image dehazing
Ist Teil von
Concurrency and computation, 2020-09, Vol.32 (18), p.n/a
Ort / Verlag
Hoboken: Wiley Subscription Services, Inc
Erscheinungsjahr
2020
Quelle
Wiley-Blackwell Journals
Beschreibungen/Notizen
Summary
Image dehazing technology has attracted much interest in the field of image processing. Most existing dehazing methods based on neural networks are inflexible and do not consider the loss in haze‐related feature space. They sacrificed texture details and perceptual characteristics in images. To overcome these weaknesses, we propose an image‐to‐image dehazing model based on generative adversarial networks (DHGAN) with dark channel prior. The DHGAN takes a hazy image as input and directly outputs a haze‐free image by applying a U‐net‐based generator. In addition to pixelwise loss and perceptual loss, we introduce dark‐channel‐minimizing loss to constrain the generated images to the manifold of natural images, thus leading to better texture details and perceptual properties. Comparative experiments on benchmark images with several state‐of‐the‐art dehazing methods demonstrate the effectiveness of the proposed DHGAN.