Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Positive solutions of nonlinear elliptic equations involving supercritical Sobolev exponents without Ambrosetti and Rabinowitz condition
Ist Teil von
Calculus of variations and partial differential equations, 2020-10, Vol.59 (5), Article 147
Ort / Verlag
Berlin/Heidelberg: Springer Berlin Heidelberg
Erscheinungsjahr
2020
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
The purpose of the present paper is to study a class of semilinear elliptic Dirichlet boundary value problems in the ball, where the nonlinearities involve the sum of a sublinear variable exponent and a superlinear (may be supercritical) variable exponents of the form
0
≤
f
(
r
,
u
)
≤
a
1
|
u
|
p
(
r
)
-
1
, if
u
≥
0
, where
r
=
|
x
|
,
p
(
r
)
=
2
∗
+
r
α
, with
α
>
0
, and
2
∗
=
2
N
/
(
N
-
2
)
is the critical Sobolev embedding exponent. We do not impose the Ambrosetti–Rabinowitz condition on the nonlinearity (or some additional conditions) to obtain Palais–Smale or Cerami compactness condition. We employ techniques based on the Galerkin approximations scheme, combining with a Sobolev type embeddings for radial functions into variable exponent Lebesgue spaces (due to do Ó et al. in Calc Var Partial Differ Equ 55:83, 2016), to establish the existence result.