Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 11

Details

Autor(en) / Beteiligte
Titel
Local density of optical states in the three-dimensional band gap of a finite photonic crystal
Ist Teil von
  • Physical review. B, 2020-06, Vol.101 (23), p.1, Article 235309
Ort / Verlag
College Park: American Physical Society
Erscheinungsjahr
2020
Link zum Volltext
Quelle
APS: American Physical Society E-Journals (Physics)
Beschreibungen/Notizen
  • A three-dimensional (3D) photonic band gap crystal is an ideal tool to completely inhibit the local density of optical states (LDOS) at every position in the crystal throughout the band gap. This notion, however, pertains to ideal infinite crystals, whereas any real crystal device is necessarily finite. This raises the question as to how the LDOS in the gap depends on the position and orientation inside a finite-size crystal. Therefore, we employ rigorous numerical calculations using finite-difference time domain simulations of 3D silicon inverse woodpile crystals filled with air or with toluene, as previously studied in experiments. We find that the LDOS versus position decreases exponentially into the bulk of the crystal. From the dependence on dipole orientation, we infer that the characteristic LDOS decay length ℓρ is mostly related to far-field dipolar radiation effects, whereas the prefactor is mostly related to near-field dipolar effects. The LDOS decay length has a remarkably similar magnitude to the Bragg length for directional transport, which suggests that the LDOS in the crystal is dominated by vacuum states that tunnel from the closest interface toward the position of interest. Our work leads to design rules for applications of 3D photonic band gaps in emission control and lighting, quantum information processing, and in photovoltaics.
Sprache
Englisch
Identifikatoren
ISSN: 2469-9950
eISSN: 2469-9969
DOI: 10.1103/PhysRevB.101.235309
Titel-ID: cdi_proquest_journals_2431253714

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX