Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 9 von 9411

Details

Autor(en) / Beteiligte
Titel
Impact of wildfire on permafrost landscapes: A review of recent advances and future prospects
Ist Teil von
  • Permafrost and periglacial processes, 2020-07, Vol.31 (3), p.371-382
Ort / Verlag
Chichester: Wiley Subscription Services, Inc
Erscheinungsjahr
2020
Quelle
Wiley-Blackwell Journals
Beschreibungen/Notizen
  • Changes in the frequency and extent of wildfires are expected to lead to substantial and irreversible alterations to permafrost landscapes under a warming climate. Here we review recent publications (2010–2019) that advance our understanding of the effects of wildfire on surface and ground temperatures, on active layer thickness and, where permafrost is ice‐rich, on ground subsidence and the development of thermokarst features. These thermal and geomorphic changes are initiated immediately following wildfire and alter the hydrology and biogeochemistry of permafrost landscapes, including the release of previously frozen carbon. In many locations, permafrost has been resilient, with key characteristics such as active layer thickness returning to pre‐fire conditions after several decades. However, permafrost near its southern limit is losing this resiliency as a result of ongoing climate warming and increasingly common vegetation state changes. Shifts in fire return intervals, severity and extent are expected to alter the trajectories of wildfire impacts on permafrost, and to enlarge spatial impacts to more regularly include the burning of tundra areas. Modeling indicates some lowland boreal forest and tundra environments will remain resilient while uplands and areas with thin organic layers and dry soils will experience rapid and irreversible permafrost degradation. More work is needed to relate modeling to empirical studies, particularly incorporating dynamic variables such as soil moisture, snow and thermokarst development, and to identify post‐fire permafrost responses for different landscape types and regions. Future progress requires further collaboration among geocryologists, ecologists, hydrologists, biogeochemists, modelers and remote sensing specialists.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX