Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 9688

Details

Autor(en) / Beteiligte
Titel
Advances in understanding large‐scale responses of the water cycle to climate change
Ist Teil von
  • Annals of the New York Academy of Sciences, 2020-07, Vol.1472 (1), p.49-75
Ort / Verlag
United States: Wiley Subscription Services, Inc
Erscheinungsjahr
2020
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Globally, thermodynamics explains an increase in atmospheric water vapor with warming of around 7%/°C near to the surface. In contrast, global precipitation and evaporation are constrained by the Earth's energy balance to increase at ∼2–3%/°C. However, this rate of increase is suppressed by rapid atmospheric adjustments in response to greenhouse gases and absorbing aerosols that directly alter the atmospheric energy budget. Rapid adjustments to forcings, cooling effects from scattering aerosol, and observational uncertainty can explain why observed global precipitation responses are currently difficult to detect but are expected to emerge and accelerate as warming increases and aerosol forcing diminishes. Precipitation increases with warming are expected to be smaller over land than ocean due to limitations on moisture convergence, exacerbated by feedbacks and affected by rapid adjustments. Thermodynamic increases in atmospheric moisture fluxes amplify wet and dry events, driving an intensification of precipitation extremes. The rate of intensification can deviate from a simple thermodynamic response due to in‐storm and larger‐scale feedback processes, while changes in large‐scale dynamics and catchment characteristics further modulate the frequency of flooding in response to precipitation increases. Changes in atmospheric circulation in response to radiative forcing and evolving surface temperature patterns are capable of dominating water cycle changes in some regions. Moreover, the direct impact of human activities on the water cycle through water ion, irrigation, and land use change is already a significant component of regional water cycle change and is expected to further increase in importance as water demand grows with global population. Societies experience impacts through localized changes in water availability that are controlled by large‐scale atmospheric circulation as well as smaller‐scale physical processes. At regional to local scales, water cycle changes therefore result from the interplay between multiple drivers (CO2, aerosols, land use change and human water use). A primary focus here is on reviewing recent advances in understanding how these complex interactions are expected to determine responses in the global water cycle.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX