Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 1577
Journal of fluid mechanics, 2020-08, Vol.897, Article R1
2020
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Leveraging reduced-order models for state estimation using deep learning
Ist Teil von
  • Journal of fluid mechanics, 2020-08, Vol.897, Article R1
Ort / Verlag
Cambridge: Cambridge University Press
Erscheinungsjahr
2020
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • State estimation is key to both analysing physical mechanisms and enabling real-time control of fluid flows. A common estimation approach is to relate sensor measurements to a reduced state governed by a reduced-order model (ROM). (When desired, the full state can be recovered via the ROM.) Current methods in this category nearly always use a linear model to relate the sensor data to the reduced state, which often leads to restrictions on sensor locations and has inherent limitations in representing the generally nonlinear relationship between the measurements and reduced state. We propose an alternative methodology whereby a neural network architecture is used to learn this nonlinear relationship. A neural network is a natural choice for this estimation problem, as a physical interpretation of the reduced state–sensor measurement relationship is rarely obvious. The proposed estimation framework is agnostic to the ROM employed, and can be incorporated into any choice of ROMs derived on a linear subspace (e.g. proper orthogonal decomposition) or a nonlinear manifold. The proposed approach is demonstrated on a two-dimensional model problem of separated flow around a flat plate, and is found to outperform common linear estimation alternatives.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX