Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
We study the Lyapunov asymptotic stability of the stationary solution of the spatially one-dimensional initial–boundary value problem for a nonlinear singularly perturbed differential equation of the reaction–diffusion–advection (RDA) type in the case where the advection and reaction terms undergo a discontinuity of the first kind at some interior point of an interval. Sufficient conditions are derived for the existence of a stable stationary solution with a large gradient near the point of discontinuity. An asymptotic method of differential inequalities is used to prove the existence and stability theorems. The resulting stability conditions can be employed to create mathematical models and develop numerical methods for solving “stiff” problems arising in various applications, for example, when simulating combustion processes and in nonlinear wave theory.