Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 7 von 234266

Details

Autor(en) / Beteiligte
Titel
Excitons and Electron–Hole Liquid State in 2D γ‐Phase Group‐IV Monochalcogenides
Ist Teil von
  • Advanced functional materials, 2020-05, Vol.30 (19), p.n/a
Ort / Verlag
Hoboken: Wiley Subscription Services, Inc
Erscheinungsjahr
2020
Link zum Volltext
Quelle
Wiley Online Journals
Beschreibungen/Notizen
  • Different dispersion near the electronic band edge of a semiconductor can have great influence on its transport, thermoelectric, and optical properties. Using first‐principles calculations, it is demonstrated that a new phase of group‐IV monochalcogenides (γ‐MX, M = Ge, Sn; X = S, Se, or Te) can be stabilized in monolayer limit. γ‐MXs are shown to possess a unique band dispersion—that is, camel's back like structure—in the top valence band. The band nesting effect near the camel's back region induces a large excitonic absorbance and significantly different exciton behaviors from other 2D materials. Importantly, the small effective mass and the indirect characteristics of lowest‐energy exciton render it advantageous for the generation of electron–hole liquid state. After careful evaluation of the electron–hole dissociation temperature and the Mott critical density, it is predicted that a high‐temperature exciton gas to electron–hole liquid phase transition can be achieved in these materials with a low excitation power density. The findings open up new opportunities for both the fundamental research on exciton physics and design of excitonic devices based on 2D materials with distinct band dispersion. A new phase of group‐IV monochalcogenides is predicted to exist in the 2D limit. They exhibit a camel's back band structure, which induces a distinct excitonic spectrum and strong excitonic absorption. Intriguingly, high‐temperature exciton gas to electron–hole liquid phase transition can be achieved with a much lower excitation power density compared to that observed in 2D group‐VI transition metal dichalcogenides.
Sprache
Englisch
Identifikatoren
ISSN: 1616-301X
eISSN: 1616-3028
DOI: 10.1002/adfm.202000533
Titel-ID: cdi_proquest_journals_2400398684

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX