Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
An efficient representation of Euclidean gravity I
Ist Teil von
The journal of high energy physics, 2011-12, Vol.2011 (12), Article 25
Ort / Verlag
Berlin/Heidelberg: Springer-Verlag
Erscheinungsjahr
2011
Quelle
Springer Nature - Complete Springer Journals
Beschreibungen/Notizen
A
bstract
We explore how the topology of spacetime fabric is encoded into the local structure of Riemannian metrics using the gauge theory formulation of Euclidean gravity. In part I, we provide a rigorous mathematical foundation to prove that a general Einstein manifold arises as the sum of SU(2)
L
Yang-Mills instantons and SU(2)
R
anti-instantons where SU(2)
L
and SU(2)
R
are normal subgroups of the four-dimensional Lorentz group Spin(4) = SU(2)
L
× SU(2)
R
. Our proof relies only on the general properties in four dimensions: The Lorentz group Spin(4) is isomorphic to SU(2)
L
× SU(2)
R
and the six-dimensional vector space
Λ
2
T
∗
M
of two-forms splits canonically into the sum of three-dimensional vector spaces of self-dual and anti-self-dual two-forms, i.e.,
. Consolidating these two, it turns out that the splitting of Spin(4) is deeply correlated with the decomposition of two-forms on four-manifold which occupies a central position in the theory of four-manifolds.