Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 7 von 17
The Journal of supercomputing, 2020-03, Vol.76 (3), p.1754-1799
2020
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Big data analytics enhanced healthcare systems: a review
Ist Teil von
  • The Journal of supercomputing, 2020-03, Vol.76 (3), p.1754-1799
Ort / Verlag
New York: Springer US
Erscheinungsjahr
2020
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • There is increased interest in deploying big data technology in the healthcare industry to manage massive collections of heterogeneous health datasets such as electronic health records and sensor data, which are increasing in volume and variety due to the commoditization of digital devices such as mobile phones and wireless sensors. The modern healthcare system requires an overhaul of traditional healthcare software/hardware paradigms, which are ill-equipped to cope with the volume and diversity of the modern health data and must be augmented with new “big data” computing and analysis capabilities. For researchers, there is an opportunity in healthcare data analytics to study this vast amount of data, find patterns and trends within data and provide a solution for improving healthcare, thereby reducing costs, democratizing health access, and saving valuable human lives. In this paper, we present a comprehensive survey of different big data analytics integrated healthcare systems and describe the various applicable healthcare data analytics algorithms, techniques, and tools that may be deployed in wireless, cloud, Internet of Things settings. Finally, the contribution is given in formation of a convergence point of all these platforms in form of SmartHealth that could result in contributing to unified standard learning healthcare system for future.
Sprache
Englisch
Identifikatoren
ISSN: 0920-8542
eISSN: 1573-0484
DOI: 10.1007/s11227-017-2222-4
Titel-ID: cdi_proquest_journals_2378943571

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX