Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 13 von 629
Pattern recognition letters, 2020-02, Vol.130, p.12-20
2020
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Modality-correlation-aware sparse representation for RGB-infrared object tracking
Ist Teil von
  • Pattern recognition letters, 2020-02, Vol.130, p.12-20
Ort / Verlag
Amsterdam: Elsevier B.V
Erscheinungsjahr
2020
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • •A modality-correlation-aware sparse representation model is proposed for RGB-infrared object tracking.•A effective and efficient learning algorithm is derived to obtain the optimal model parameters.•Extensive experiments are performed to demonstrate the effectiveness of the proposed method on some large appearance variations such as low illumination condition. To intelligently analyze and understand video content, a key step is to accurately perceive the motion of the interested objects in videos. To this end, the task of object tracking, which aims to determine the position and status of the interested object in consecutive video frames, is very important, and has received great research interest in the last decade. Although numerous algorithms have been proposed for object tracking in RGB videos, most of them may fail to track the object when the information from the RGB video is not reliable (e.g. in dim environment or large illumination change). To address this issue, with the popularity of dual-camera systems for capturing RGB and infrared videos, this paper presents a feature representation and fusion model to combine the feature representation of the object in RGB and infrared modalities for object tracking. Specifically, this proposed model is able to (1) perform feature representation of objects in different modalities by employing the robustness of sparse representation, and (2) combine the representation by exploiting the modality correlation. Extensive experiments demonstrate the effectiveness of the proposed method.
Sprache
Englisch
Identifikatoren
ISSN: 0167-8655
eISSN: 1872-7344
DOI: 10.1016/j.patrec.2018.10.002
Titel-ID: cdi_proquest_journals_2377703454

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX