Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 20 von 33

Details

Autor(en) / Beteiligte
Titel
Synthesis, characterization, morphology and adsorption performance towards cu+2 ions of nano-sized copolymers of anthranilic acid and o-aminophenol poly(anthranilic acid-co-o-aminophenol)
Ist Teil von
  • Journal of polymer research, 2020, Vol.27 (4), Article 90
Ort / Verlag
Dordrecht: Springer Netherlands
Erscheinungsjahr
2020
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Nanospheres with different particles size and nanorodes of copolymer of anthranilic acid with o -aminophenol poly(AA-co- o -AP) were synthesized by redox polymerization initiated by FeSO 4 .7H 2 O as redox initiator and ammonium peroxydisulfate (APS) as oxidant in different concentrations of aqueous solutions of hydrochloric acid. The influence of synthetic parameters such as acid concentration and the presence of redox initiator were investigated. The morphology and particles size were studied by transmission electron microscope (TEM) and scanning electron microscope (SEM). The results showed that the morphology and average particle size of polymeric nano particles according to SEM and TEM analyses were different based upon the conditions of the copolymerization. The physico-chemical characterization of the prepared nanoparticles was carried out by Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD) and Thermogravimetric(TGA). Which FT-IR confirmed the structure of poly(AA-co- o -AP) nanoparticles in emeraldine form. The molecular weight was determined by gel permeation chromatography (GPC). The surface area of nanocopolymer particles was determined also by Brunauer-Emmett-Teller (BET). The competition of the prepared nano-sized copolymers particles towards the adsorption of copper ions from aqueous solutions was investigated. The results showed that the adsorption capacity was based on particle size of nanocopolymers and their surface area. The adsorption capacity increased with decreasing the particle size. On the other hand the adsorption capacity increased with increasing the surface area and the molecular weight of the prepared nano-sized copolymers of poly(AA-co- o -AP).

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX