Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Space-based missions such as Kepler, and soon the Transiting Exoplanet Survey Satellite (TESS), provide large data sets that must be analyzed efficiently and systematically. Recent work by Shallue & Vanderburg successfully used state-of-the-art deep learning models to automatically classify Kepler transit signals as either exoplanets or false positives; our application of their model yielded 95.8% accuracy and 95.5% average precision. Here we expand upon that work by including additional scientific domain knowledge into the network architecture and input representations to significantly increase overall model performance to 97.5% accuracy and 98.0% average precision. Notably, we achieve 15%-20% gains in recall for the lowest signal-to-noise transits that can correspond to rocky planets in the habitable zone. We input into the network centroid time-series information derived from Kepler data plus key stellar parameters taken from the Kepler data release 25 catalog. We also implement data augmentation techniques to alleviate model over-fitting. These improvements allow us to drastically reduce the size of the model, while still maintaining improved performance; smaller models are better for generalization, for example from Kepler to TESS data. This Letter illustrates the importance of including expert domain knowledge in even state-of-the-art deep learning models when applying them to scientific research problems that seek to identify weak signals in noisy data. This classification tool will be especially useful for upcoming space-based photometry missions focused on finding small planets, such as TESS and PLATO.