Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
The Astrophysical journal, 2019-12, Vol.887 (1), p.9
2019
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Inferring Galactic Parameters from Chemical Abundances: A Multi-star Approach
Ist Teil von
  • The Astrophysical journal, 2019-12, Vol.887 (1), p.9
Ort / Verlag
Philadelphia: The American Astronomical Society
Erscheinungsjahr
2019
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Constraining parameters such as the initial mass function high-mass slope and the frequency of Type Ia supernovae is of critical importance in the ongoing quest to understand galactic physics and create realistic hydrodynamical simulations. In this paper, we demonstrate a method for precisely determining these using individual chemical abundances from a large set of stars, coupled with some estimate of their ages. Inference is performed via the simple chemical evolution model Chempy in a Bayesian framework, marginalizing over each star's specific interstellar medium parameters, including an element-specific "model error" parameter to account for inadequacies in our model. Hamiltonian Monte Carlo methods are used to sample the posterior function, which is made possible by replacing Chempy with a trained neural network at negligible error. The approach is tested using data from both Chempy and the IllustrisTNG simulation, showing subpercent agreement between inferred and true parameters using data from up to 1600 individual stellar abundances. For IllustrisTNG, the strongest constraints are obtained from metal ratios, competitive with those from other methods including star counts. Analysis using a different set of nucleosynthetic yields shows that incorrectly assumed yield models can give non-negligible bias in the derived parameters; this is reduced by our model errors, which further show how well the yield tables match the data. We also find a significant bias from analyzing only a small set of stars, as is often done in current analyses. The method can be easily applied to observational data, giving tight bounds on key galactic parameters from chemical abundances alone.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX