Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 95
Applied Mathematical Modelling, 2020-01, Vol.77, p.1095-1109
2020
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Numerical solution of bed load transport equations using discrete least squares meshless (DLSM) method
Ist Teil von
  • Applied Mathematical Modelling, 2020-01, Vol.77, p.1095-1109
Ort / Verlag
New York: Elsevier Inc
Erscheinungsjahr
2020
Quelle
EBSCO Psychology and Behavioral Sciences Collection
Beschreibungen/Notizen
  • •A truly meshless method is extended in this paper for solving coupled bedload sediment transport equations.•The method can solve problems which their domains discretized by irregularly distributed nodes, and shows good accuracy.•The method is applicable to cope with complex geometry in practical problems. The discrete least squares meshless (DLSM) method is extended in this paper for solving coupled bedload sediment transport equations. The mathematical formulation of this model consists of shallow water equations for the hydrodynamical component and an Exner equation expressing sediment continuity for the bedload transport. This method uses the moving least squares (MLS) function approximation to construct the shape functions and the minimizing least squares functional method to discretize the system of equations. The method can be viewed as a truly meshless method as it does not need any mesh for both field variable approximation and the construction of system matrices; it also provides the symmetric coefficient matrix. In the present work, several benchmark problems are studied and compared with the work of other researchers; the proposed method shows good accuracy, high convergence rate, and high efficiency, even for irregularly distributed nodes. At the end, a real test problem is performed to show and verify the main benefit and applicability of the proposed method to cope with complex geometry in practical problems.
Sprache
Englisch
Identifikatoren
ISSN: 0307-904X, 1088-8691
eISSN: 0307-904X
DOI: 10.1016/j.apm.2019.08.016
Titel-ID: cdi_proquest_journals_2333952291

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX