Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Fused in sarcoma (FUS) is a DNA/RNA‐binding protein associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. The exact molecular mechanisms by which FUS results in neurotoxicity have not yet been fully elucidated. Here, we found that parkin is a genetic suppressor of defective phenotypes induced by exogenous human wild type FUS in Drosophila. Although parkin overexpression did not modulate the FUS protein expression level, the locomotive defects in FUS‐expressing larvae and adult flies were rescued by parkin expression. We found that FUS expression in muscle tissues resulted in a reduction of the levels and assembly of mitochondrial complex I and III subunits, as well as decreased ATP. Remarkably, expression of parkin suppressed these mitochondrial dysfunctions. Our results indicate parkin as a neuroprotective regulator of FUS‐induced proteinopathy by recovering the protein levels of mitochondrial complexes I and III. Our findings on parkin‐mediated neuroprotection may expand our understanding of FUS‐induced ALS pathogenesis.
Parkin rescues the locomotive defect in neurone‐specific FUS‐expressing flies.
Parkin overexpression did not modulate FUS protein level.
Down‐regulation of complex I and III subunits is compensated by parkin.