Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 4 von 20
International journal of environmental impacts (Print), 2019-09, Vol.2 (4), p.309-324
2019
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Long-term air pollution trend analysis in Malaysia
Ist Teil von
  • International journal of environmental impacts (Print), 2019-09, Vol.2 (4), p.309-324
Ort / Verlag
Southampton: W I T Press
Erscheinungsjahr
2019
Quelle
EZB Free E-Journals
Beschreibungen/Notizen
  • Air pollution has become increasingly significant in the last few decades as a major potential risk to public health in Malaysia due to rapid economic development, coupled with seasonal trans-boundary pollution. Over the years, air pollution in Malaysia has been characterised by large seasonal variations, which are significantly attributed to trans-boundary pollution. The aim of this study is to analyse the long-term temporal dynamic (1997–2015) of CO, NOX and PM10 at 20 monitoring stations across Malaysia. Long-term pollutant trends were analysed using the Mann–Kendall test. For potential pollutant source analysis, satellite data and Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) backward trajectories model were employed. In all monitoring sites, we observed that the annual average concentrations of PM10 were varied, with large coefficient variations. Meanwhile, CO and NOx were found to be less varied, with smaller coefficient variations, except in certain monitoring sites. Long-term analysis trends for CO attested to insignificant decreasing trends in 11 monitoring stations and increasing trends in seven stations. Meanwhile, NOX showed no significant trends in most stations. For PM10, five monitoring stations showed increasing trends, whereas 15 other stations showed decreasing trends. HYSPLIT backward trajectory analyses have shown that high seasonal PM10 levels in most parts of Malaysia are due to trans-boundary pollution. Large-scale intense biomass burning in Indonesia, particularly during the southwest monsoon, has been identified as the main potential source. Long-term air pollution in Malaysia is characterised largely by trans-boundary pollution and is highly seasonal. In urban areas of Malaysian Peninsula, combinations of trans-boundary pollution and local emission sources were notably identified as important sources. Long-term PM10 pollution in Malaysia shows small but significant decreasing trends. Therefore, to ensure that the effect of air pollution on human health is minimised, special attention needs to be focused on short-term pollution episodes, particularly during trans-boundary pollution events and extreme weather conditions such as El Niño.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX