Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 26 von 82
IEEE robotics and automation letters, 2018-10, Vol.3 (4), p.2950-2956
2018
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Analysis of Morphology-Based Features for Classification of Crop and Weeds in Precision Agriculture
Ist Teil von
  • IEEE robotics and automation letters, 2018-10, Vol.3 (4), p.2950-2956
Ort / Verlag
Piscataway: IEEE
Erscheinungsjahr
2018
Quelle
IEEE
Beschreibungen/Notizen
  • Determining the types of vegetation present in an image is a core step in many precision agriculture tasks. In this letter, we focus on pixel-based approaches for classification of crops versus weeds, especially for complex cases involving overlapping plants and partial occlusion. We examine the benefits of multiscale and content-driven morphology-based descriptors called attribute profiles. These are compared to the state-of-the-art keypoint descriptors with a fixed neighborhood previously used in precision agriculture, namely histograms of oriented gradients and local binary patterns. The proposed classification technique is especially advantageous when coupled with morphology-based segmentation on a max-tree structure, as the same representation can be reused for feature extraction. The robustness of the approach is demonstrated by an experimental evaluation on two datasets with different crop types, while being able to provide descriptors at a higher resolution. The proposed approach compared favorably to the state-of-the-art approaches without an increase in computational complexity, while being able to provide descriptors at a higher resolution.
Sprache
Englisch
Identifikatoren
ISSN: 2377-3766
eISSN: 2377-3766
DOI: 10.1109/LRA.2018.2848305
Titel-ID: cdi_proquest_journals_2299370134

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX