Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 5870
IEEE transactions on circuits and systems for video technology, 2019-09, Vol.29 (9), p.2580-2589
2019
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Deep CNNs for Object Detection Using Passive Millimeter Sensors
Ist Teil von
  • IEEE transactions on circuits and systems for video technology, 2019-09, Vol.29 (9), p.2580-2589
Ort / Verlag
New York: IEEE
Erscheinungsjahr
2019
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • Passive millimeter wave images (PMMWIs) can be used to detect and localize objects concealed under clothing. Unfortunately, the quality of the acquired images and the unknown position, shape, and size of the hidden objects render these tasks challenging. In this paper, we discuss a deep learning approach to this detection/localization problem. The effect of the nonstationary acquisition noise on different architectures is analyzed and discussed. A comparison with shallow architectures is also presented. The achieved detection accuracy defines a new state of the art in object detection on PMMWIs. The low computational training and testing costs of the solution allow its use in real-time applications.
Sprache
Englisch
Identifikatoren
ISSN: 1051-8215
eISSN: 1558-2205
DOI: 10.1109/TCSVT.2017.2774927
Titel-ID: cdi_proquest_journals_2285339054

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX