Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 24 von 306
Multimedia tools and applications, 2019-12, Vol.78 (23), p.33633-33658
2019
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Adaptive active contour model driven by image data field for image segmentation with flexible initialization
Ist Teil von
  • Multimedia tools and applications, 2019-12, Vol.78 (23), p.33633-33658
Ort / Verlag
New York: Springer US
Erscheinungsjahr
2019
Quelle
2022 ECC(Springer)
Beschreibungen/Notizen
  • In this paper, a novel adaptive active contour model based on image data field for image segmentation with robust and flexible initializations is proposed. We firstly construct a new external energy term deduced from the image data field that drives the level set function to move in the opposite direction along the boundaries of object and an adaptive length regularization term based on the image local entropy. The designed external energy and length regularization term are then incorporated into a variationlevel set framework with an additional penalizing energy term. Due to the adaptive sign–changing property of the external energy and the adaptive length regularization term, the proposed model can tackle images with clutter background and noise, the level set function can be initialized as any bounded functions (e.g., constant function), which implies the proposed model is robust to initialization of contours. Experimental results on both synthetic and real images from different modalities confirm the effectiveness and competivive performance of the proposed method compared with other representative models.
Sprache
Englisch
Identifikatoren
ISSN: 1380-7501
eISSN: 1573-7721
DOI: 10.1007/s11042-019-08098-8
Titel-ID: cdi_proquest_journals_2282739814

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX