Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Fabrication of binder-free electrode using reinforced resorcinol formaldehyde-based carbon aerogels
Ist Teil von
Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2019-08, Vol.21 (8), p.1-21, Article 178
Ort / Verlag
Dordrecht: Springer Netherlands
Erscheinungsjahr
2019
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
In this study, the electrochemical performance of the binder-free electrode based on the reinforced resorcinol formaldehyde (RF) carbon aerogels (CAs) was investigated for electric double layer capacitor (EDLC) application. Resorcinol formaldehyde aerogel (RF) was crosslinked using methylene diphenyl diisocyanate (MDI) and then pyrolyzed to produce carbon aerogel (CA). CA was subsequently activated using CO
2
gas. The morphological changes due to the reinforcing and activation process were explored by SEM. The BET and BJH results showed an improvement in specific surface area and microporous volume. The CO
2
-activated CAs displayed up to twice more specific surface areas compared with the unactivated CAs. The compressive test verified an improvement of up to 5 times in the mechanical strength. In order to investigate the electrochemical performance, cyclic voltammetry (CV), charge/discharge (CD), and electrochemical impedance microscopy (EIS) were carried out. In an identical electrode weight, the specific capacity of binder-free electrodes increased about twice, in comparison with the common electrodes due to the removal of the binder and the collector. The highest specific capacitance among the fabricated samples was obtained for the reinforced and activated sample with resorcinol/catalyst (R/C) ratio of 700, which was equal to 55.5 F/g.