Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 16 von 18
Heat transfer, Asian research, 2019-09, Vol.48 (6), p.2067-2081
2019
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Mixed convective flow in a bottom heated lid‐driven cubical cavity: Energy streamlines and field synergy
Ist Teil von
  • Heat transfer, Asian research, 2019-09, Vol.48 (6), p.2067-2081
Ort / Verlag
Hoboken: Wiley Subscription Services, Inc
Erscheinungsjahr
2019
Quelle
Wiley Online Library - AutoHoldings Journals
Beschreibungen/Notizen
  • Analysis of three dimensional natural convective lid‐driven cavity flow is carried out numerically. The top wall is assumed to slide in its own plane at a constant speed. Isothermal temperature is maintained at horizontal walls in which the bottom wall is assumed to be at a higher temperature than the top wall. Governing equations of this problem, expressed in dimensionless form are solved by using the finite volume method. Numerical results are computed for the control parameters arising in the system, namely, the Reynolds number (Re) and Richardson number (Ri) in the range of 100 ≤ Re ≤ 1000 and 0.001 ≤ Ri ≤ 10. The contours of isotherms, streamlines, Vortex corelines, energy pathlines, and field synergy are used to visualize the flow and thermal characteristics. The simulated results are corroborated with those available in the literature. When Re = 100 and 400 with growth of Ri there are "free" energy streamlines and they exhibited symmetric nature near the boundaries. The participation of convective thermal energy and kinetic energy is insignificant compared to conductive thermal energy, where the velocity components are modest. When Re = 1000 with increase of Ri, "trapped" energy streamlines are detected. Energy streamlines occupy substantial part. This is due to the result of high Re, with increasing Ri, kinetic energy and convective thermal energy get dominated and hence "trapped" streamlines formed. As Re increases, synergy angle increases for distinct Ri values. So the synergy between temperature and velocity gets worse. The synergy angle of buoyant‐aiding flow is high while the buoyant‐opposing flow is significantly less than that of forced convection flow when Ri = 1. This gives the relation between temperature field and velocity at buoyant‐aiding flow, which is at the worst situation leading to increasing average Nusselt number.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX