Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 26 von 74816

Details

Autor(en) / Beteiligte
Titel
Polyoxometalate‐Derived Ultrasmall Pt2W/WO3 Heterostructure Outperforms Platinum for Large‐Current‐Density H2 Evolution
Ist Teil von
  • Advanced energy materials, 2019-07, Vol.9 (26), p.n/a
Ort / Verlag
Weinheim: Wiley Subscription Services, Inc
Erscheinungsjahr
2019
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Platinum (Pt)‐based catalysts with high Pt utilization efficiency for efficient H2 evolution are attracting extensive attention to meet the issues of energy exhaustion and environmental pollution. Herein, a one‐step electrochemical method is demonstrated to construct ultrafine heterostructure Pt2W/WO3 on reduced graphene oxide (RGO) by injecting multielectrons into the Preyssler anion [NaP5W30O110]14− to codeposit with anodic deliquescent Pt cations. The resulting Pt2W/WO3/RGO shows much higher performance than that of commercial Pt catalysts for large‐current‐density H2 evolution, which can deliver a large current density of 500 mA cm−2 with an overpotential of only 394 mV, much lower than that of 20% Pt/C (578 mV). Comparisons with control experiments and density functional theory (DFT) calculations both suggest that the much enhanced activity can be mainly attributed to the synergistic cooperation of different components to drive fast and continuous hydrogen desorption on Pt2W/WO3/RGO, while it could not run normally for 20% Pt/C under similar conditions due to the formation of huge bubbles on the electrode surface. The effective integration of high catalytic activity and hydrogen desorption ability into a single material can yield advanced materials for large‐current‐density H2 evolution with remarkable stability. A polyoxometalate‐derived ultrafine heterostructure Pt2W/WO3 is constructed via a one‐step electrochemical codeposition process. This heterostructure can act as an efficient hydrogen evolution reaction (HER) electrocatalyst with performance that can significantly outperform platinum for large‐current‐density H2 evolution. The effective integration of high catalytic activity and hydrogen desorption ability into a single material represents a promising way to yield advanced materials for large‐current‐density H2 evolution.
Sprache
Englisch
Identifikatoren
ISSN: 1614-6832
eISSN: 1614-6840
DOI: 10.1002/aenm.201900597
Titel-ID: cdi_proquest_journals_2265604072

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX