Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 4 von 299

Details

Autor(en) / Beteiligte
Titel
An Amorphous Nickel–Iron‐Based Electrocatalyst with Unusual Local Structures for Ultrafast Oxygen Evolution Reaction
Ist Teil von
  • Advanced materials (Weinheim), 2019-07, Vol.31 (28), p.e1900883-n/a
Ort / Verlag
Germany: Wiley Subscription Services, Inc
Erscheinungsjahr
2019
Quelle
Wiley Online Library - AutoHoldings Journals
Beschreibungen/Notizen
  • Rationally designing active and durable catalysts for the oxygen evolution reaction (OER) is of primary importance in water splitting. Perovskite oxides (ABO3) with versatile structures and multiple physicochemical properties have triggered considerable interest in the OER. The leaching of A site cations can create nanostructures and amorphous motifs on the perovskite matrix, thus facilitating the OER process. However, selectively dissolving A site cations and simultaneously obtaining more active amorphous motifs derived from the B site cations remains a great challenge. Herein, a top‐down strategy is proposed to transform bulk crystalline perovskite (LaNiO3) into a nanostructured amorphous hydroxide by FeCl3 post‐treatment, resulting in an extremely low overpotential of 189 mV at 10 mA cm−2. The top‐down‐constructed amorphous catalyst with a large surface area has dual NiFe active sites, where high‐valence Ni3+‐based edge‐sharing octahedral frameworks are surrounded by interstitial distorted Fe octahedra and contribute to the superior OER performance. This top‐down strategy provides a valid way to design novel perovskite‐derived catalysts. An amorphous NiFe‐based catalyst (a‐LNF(t‐d)) is constructed from LaNiO3 perovskite oxide through a top‐down strategy involving FeCl3 post‐treatment, which selectively dissolves the La ions and deposits the Fe ions. The a‐LNF(t‐d) sample, with large surface area and unusual electronic/geometrical structure shows extremely high oxygen evolution reaction (OER) activity and stability.
Sprache
Englisch
Identifikatoren
ISSN: 0935-9648
eISSN: 1521-4095
DOI: 10.1002/adma.201900883
Titel-ID: cdi_proquest_journals_2265595480

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX