Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 25

Details

Autor(en) / Beteiligte
Titel
Microwave-assisted synthesis and surface decoration of LiFePO4 hexagonal nanoplates for lithium-ion batteries with excellent electrochemical performance
Ist Teil von
  • Journal of materials science, 2017-02, Vol.52 (3), p.1590-1602
Ort / Verlag
New York: Springer US
Erscheinungsjahr
2017
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Microwave-assisted synthesis of electrode materials for lithium-ion batteries has drawn extensive attention owing to the unique microwave dielectric heating. In this work, olivine LiFePO 4 hexagonal nanoplates, with a short b -axis, were successfully synthesized using a single-mode microwave-assisted hydrothermal system at 160 °C just in 20 min. Microwave irradiation can lower the synthesis temperature and shorten the synthesis time dramatically. The growth process of LiFePO 4 hexagonal nanoplates with microwave irradiation time was investigated. The role of electromagnetic field in the formation and the quality of the resulting LiFePO 4 were explored. In order to enhance the electrochemical properties of LiFePO 4 hexagonal nanoplates, LiFePO 4 /C and LiFePO 4 /rGO have been obtained through surface decoration of LiFePO 4 nanoplates by ex situ carbon coating and in situ reduced graphene oxide (rGO) coating. The electrochemical analysis demonstrated that LiFePO 4 /rGO had more excellent electrochemical performance; the initial discharge capacity at 0.1 C was up to 167.2 mAh g −1 which was very close to the theoretical value (170 mAh g −1 ). This is because the in situ coating can achieve a complete coating of the surface and rGO has a higher electrical conductivity. The rGO layer can boost the transport speed of the lithium ions and electrons, and reduce the charge transfer resistance of Li ion insertion/extraction. Furthermore, the unique structure of the nanoplates with a short b -axis is favored to shorten the migration of Li + ion.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX