Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 15 von 6971
GPS solutions, 2013-01, Vol.17 (1), p.103-119
2013
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Precise relative positioning using real tracking data from COMPASS GEO and IGSO satellites
Ist Teil von
  • GPS solutions, 2013-01, Vol.17 (1), p.103-119
Ort / Verlag
Berlin/Heidelberg: Springer-Verlag
Erscheinungsjahr
2013
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • China completed a basic COMPASS navigation network with three Geostationary and three Inclined Geosynchronous satellites in orbit in April 2011. The network has been able to provide preliminary positioning and navigation functions. We first present a quality analysis using 1-week COMPASS measurements collected in Wuhan. Satellite visibility and validity of measurements, carrier-to-noise density ratio and code noise are analyzed. The analysis of multipath combinations shows that the noise level of COMPASS code measurements is higher than that of GPS collected using the same receiver. Second, the results of positioning are presented and analyzed. For the standalone COMPASS solutions, an accuracy of 20 m can be achieved. An accuracy of 3.0 m for the vertical, 1.5 m for the North and about 0.6–0.8 m for the East component is obtained using dual-frequency code only measurements for a short baseline. More importantly, code and phase measurements of the short baseline are processed together to obtain precise relative positioning. Kinematic solutions are then compared with the ground truth. The precision of COMPASS only solutions is better than 2 cm for the North component and 4 cm for the vertical. The standard deviation of the East component is smaller than 1 cm, which is even better than that of the East component of GPS solutions. The accuracy of GPS/COMPASS combination solutions is at least 20 % better than that of GPS alone. Furthermore, the geometry-based residuals of double differenced phase and code measurements are analyzed. The analysis shows that the noise level of un-differenced phase measurements is about 2–4 mm on both B1 and B2 frequencies. For the code measurements, the noise level is less than 0.45 m for B1 CA and about 0.35 m for B2 P code. Many of the COMPASS results presented are very promising and have been obtained for the first time.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX