Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 16 von 83
Neural computing & applications, 2019-01, Vol.31 (Suppl 1), p.509-522
2019
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Differential evolution-based efficient multi-objective optimal power flow
Ist Teil von
  • Neural computing & applications, 2019-01, Vol.31 (Suppl 1), p.509-522
Ort / Verlag
London: Springer London
Erscheinungsjahr
2019
Quelle
SpringerLink
Beschreibungen/Notizen
  • This paper proposes a novel-efficient evolutionary-based multi-objective optimization (MOO) approaches for solving the optimal power flow (OPF) problem using the concept of incremental load flow model based on sensitivities and some heuristics. This paper is useful in robust decision-making for the system operator. The main disadvantage of meta-heuristic-based MOO approach is computationally burdensome. The motivation of this paper is to overcome this drawback. By using the proposed efficient MOO approach, the number of load flows to be performed is reduced substantially, resulting to the solution speed up. Here, three objective functions, i.e., generator fuel cost minimization, loss minimization, and L index minimization are considered. The proposed approach can effectively handle the complex non-linearities, discontinuities, discrete variables, and multiple objectives. The potential and suitability of the proposed efficient MOO approach is tested on the IEEE 30 bus system. The results obtained with the proposed efficient MOO approach are also compared with the meta-heuristic-based non-dominated sorting genetic algorithm-2 (NSGA-II) technique. In this paper, the proposed efficient MOO approach is implemented using the differential evolutionary (DE) algorithm. However, it is a generic one and can be implemented with any type of evolutionary algorithm.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX