Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 5 von 20

Details

Autor(en) / Beteiligte
Titel
Potentials for Error Detection and Quality Improvement in Assembly Lines Using FFT, Clustering and Dynamic Envelope Curve
Ist Teil von
  • Applied mechanics and materials, 2017-10, Vol.871, p.52-59
Ort / Verlag
Zurich: Trans Tech Publications Ltd
Erscheinungsjahr
2017
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Conventional serial and workshop productions use specific parameter ranges to evaluate the quality of a process. Our research showed that parameters within tolerances do not ensure good quality of the final product due to malicious parameter combinations along the assembly line. Therefore, data sets from assembly processes like force-way or force-time curves and quality measurements are evaluated in this novel approach. Using Fourier Transform, k-means, decision trees and a dynamic envelope curve, classification and process monitoring are processed in time and frequency domain. This enables new possibilities to characterize quality and process data, for advanced error detection as well as a more simplified tracing of faults. Here, holistic optimization and monitoring follows two strategies. First, a simplified tracing approach of malicious impacts regards quality results from test benches. Therefore, assembly processes are monitored and characterized by quality data. Second, defective influences, like tool break or calibration errors, are linked to variations of the usual process behavior. Here, the error detection approach focuses on process data from single assembly stations. This approach uses three different methods. First, Fourier Transform extracts additional information from process, energy and quality data. Second, k-means algorithm is used to cluster quality data and extend the data base. Third, a decision tree classifies the quality of the final good and characterizes assembly processes. Last, results of k-means clustering and selected classification methods are compared. This combination allows to increase process quality, improve product quality and reduce failure costs.
Sprache
Englisch
Identifikatoren
ISBN: 9783035712155, 3035712158
ISSN: 1660-9336, 1662-7482
eISSN: 1662-7482
DOI: 10.4028/www.scientific.net/AMM.871.52
Titel-ID: cdi_proquest_journals_2199192675

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX