Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 139957
Computer methods in applied mechanics and engineering, 2019-04, Vol.346, p.841-861
2019
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Nonlinear higher-order shell theory for incompressible biological hyperelastic materials
Ist Teil von
  • Computer methods in applied mechanics and engineering, 2019-04, Vol.346, p.841-861
Ort / Verlag
Amsterdam: Elsevier B.V
Erscheinungsjahr
2019
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • In the present study, a geometrically nonlinear theory for circular cylindrical shells made of incompressible hyperelastic materials is developed. The 9-parameter theory is higher-order in both shear and thickness deformations. In particular, the four parameters describing the thickness deformation are obtained directly from the incompressibility condition. The hyperelastic law selected is a state-of-the-art material model in biomechanics of soft tissues and takes into account the dispersion of collagen fiber directions. Special cases, obtained from this hyperelastic law setting to zero one or some material coefficients, are the Neo-Hookean material and a soft biological material with two families of collagen fibers perfectly aligned. The proposed model is validated through comparison with the exact solution for axisymmetric cylindrical deformation of a thick cylinder. In particular, the shell theory developed herein is capable to describe, with extreme accuracy, even the post-stability problem of a pre-stretched and inflated Neo-Hookean cylinder until the thickness vanishes. Comparison to the solution of higher-order shear deformation theory, which neglects the thickness deformation and recovers the normal strain from the incompressibility condition, is also presented. •Higher-order shear and thickness deformation nonlinear shell theory.•Incompressibility satisfied by third invariant of the right Cauchy–Green deformation tensor.•Hyperelastic material law for soft biological materials.•Validation through comparison with exact 3D solution.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX