Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 4 von 63
The International journal of robotics research, 2018-12, Vol.37 (13-14), p.1673-1689
2018
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Constraint-aware learning of policies by demonstration
Ist Teil von
  • The International journal of robotics research, 2018-12, Vol.37 (13-14), p.1673-1689
Ort / Verlag
London, England: SAGE Publications
Erscheinungsjahr
2018
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Many practical tasks in robotic systems, such as cleaning windows, writing, or grasping, are inherently constrained. Learning policies subject to constraints is a challenging problem. In this paper, we propose a method of constraint-aware learning that solves the policy learning problem using redundant robots that execute a policy that is acting in the null space of a constraint. In particular, we are interested in generalizing learned null-space policies across constraints that were not known during the training. We split the combined problem of learning constraints and policies into two: first estimating the constraint, and then estimating a null-space policy using the remaining degrees of freedom. For a linear parametrization, we provide a closed-form solution of the problem. We also define a metric for comparing the similarity of estimated constraints, which is useful to pre-process the trajectories recorded in the demonstrations. We have validated our method by learning a wiping task from human demonstration on flat surfaces and reproducing it on an unknown curved surface using a force- or torque-based controller to achieve tool alignment. We show that, despite the differences between the training and validation scenarios, we learn a policy that still provides the desired wiping motion.
Sprache
Englisch
Identifikatoren
ISSN: 0278-3649
eISSN: 1741-3176
DOI: 10.1177/0278364918784354
Titel-ID: cdi_proquest_journals_2170230614

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX