Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 9 von 40953

Details

Autor(en) / Beteiligte
Titel
Tritium supply and use: a key issue for the development of nuclear fusion energy
Ist Teil von
  • Fusion engineering and design, 2018-11, Vol.136, p.1140-1148
Ort / Verlag
Amsterdam: Elsevier B.V
Erscheinungsjahr
2018
Link zum Volltext
Quelle
Elsevier ScienceDirect Journals Complete
Beschreibungen/Notizen
  • •CANDU supply of tritium is uncertain, and other sources present numerous issues.•Even in the worst-case scenario, CANDU tritium remains available to support ITER.•Tritium is readily available for compact fusion development in the next two decades.•DD or low tritium start-up regimes are critical for commercial roll-out of fusion. Full power operation of the International Thermonuclear Experimental Reactor (ITER) has been delayed and will now begin in 2035. Delays to the ITER schedule may affect the availability of tritium for subsequent fusion devices, as the global CANDU-type fission reactor fleet begins to phase out over the coming decades. This study provides an up to date account of future tritium availability by incorporating recent uncertainties over the life extension of the global CANDU fleet, as well as considering the potential impact of tritium demand by other fusion efforts. Despite the delays, our projections suggest that CANDU tritium remains sufficient to support the full operation of ITER. However, whether there is tritium available for a DEMO reactor following ITER is largely uncertain, and is subject to numerous uncontrollable externalities. Further tritium demand may come from any number of private sector “compact fusion” start-ups which have emerged in recent years, all of which aim to accelerate the development of fusion energy. If the associated technical challenges can be overcome, compact fusion programmes have the opportunity to use tritium over the next two decades whilst it is readily available, and before full power DT operation on ITER starts in 2035. Assuming a similar level of performance is achievable, a compact fusion development programme, using smaller reactors operating at lower fusion power, would require smaller quantities of tritium than the ITER programme, leaving sufficient tritium available for multiple concepts to be developed concurrently. The development of concurrent fusion concepts increases the chances of success, as it spreads the risk of failure. Additionally, if full tritium breeding capability is not expected to be demonstrated in DEMO until after 2050, an opportunity exists for compact fusion programmes to incorporate tritium breeding technology in nearer-term devices. DD start-up, which avoids the need for external tritium for reactor start-up, is dependent upon full tritium breeding capability, and may be essential for large-scale commercial roll-out of fusion energy. As such, from the standpoint of availability and use of external tritium, a compact route to fusion energy may be more advantageous, as it avoids longer-term complications and uncertainties in the future supply of tritium.
Sprache
Englisch
Identifikatoren
ISSN: 0920-3796
eISSN: 1873-7196
DOI: 10.1016/j.fusengdes.2018.04.090
Titel-ID: cdi_proquest_journals_2159931233

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX