Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 23 von 379
Computational geosciences, 2019-04, Vol.23 (2), p.207-224
2019
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Multiscale two-stage solver for Biot’s poroelasticity equations in subsurface media
Ist Teil von
  • Computational geosciences, 2019-04, Vol.23 (2), p.207-224
Ort / Verlag
Cham: Springer International Publishing
Erscheinungsjahr
2019
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • We propose a two-stage preconditioner for accelerating the iterative solution by a Krylov subspace method of Biot’s poroelasticity equations based on a displacement-pressure formulation. The spatial discretization combines a finite element method for mechanics and a finite volume approach for flow. The fully implicit backward Euler scheme is used for time integration. The result is a 2 × 2 block linear system for each timestep. The preconditioning operator is obtained by applying a two-stage scheme. The first stage is a global preconditioner that employs multiscale basis functions to construct coarse-scale coupled systems using a Galerkin projection. This global stage is effective at damping low-frequency error modes associated with long-range coupling of the unknowns. The second stage is a local block-triangular smoothing preconditioner, which is aimed at high-frequency error modes associated with short-range coupling of the variables. Various numerical experiments are used to demonstrate the robustness of the proposed solver.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX