Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
High-order soliton matrices for Sasa–Satsuma equation via local Riemann–Hilbert problem
Ist Teil von
Nonlinear analysis: real world applications, 2019-02, Vol.45, p.918-941
Ort / Verlag
Amsterdam: Elsevier Ltd
Erscheinungsjahr
2019
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
A study of high-order soliton matrices for Sasa–Satsuma equation in the framework of the Riemann–Hilbert problem approach is presented. Through a standard dressing procedure, soliton matrices for simple zeros and elementary high-order zeros in the Riemann–Hilbert problem for Sasa–Satsuma equation are constructed, respectively. It is noted that pairs of zeros are simultaneously tackled in the situation of the high-order zeros, which is different from other NLS-type equation. Furthermore, the generalized Darboux transformation for Sasa–Satsuma equation is also presented. Moreover, collision dynamics along with the asymptotic behavior for the two-solitons are analyzed, and long time asymptotic estimations for the high-order one-soliton are concretely calculated. In this case, two double-humped solitons with nearly equal velocities and amplitudes can be observed.